
7 .

/ ,
NASA-CR-200181

J

SIMULATION IN A DYNAMIC PROTOTYPING ENVIRONMENT:
PETRI NETS OR RULES? "

Loretta A. Moore and Shannon W. Price

Computer Science and Engineering

Auburn University

Auburn, AL 36849

(205) 844 - 6330

moore@eng.auburn.edu

Joseph P. Hale

Mission Operations Laboratory

NASA Marshall Space Flight Center

MSFC, AL 35812

(205) 544-2193

joe.hale@ msfc.nasa.gov

ABSTRACT

An evaluation of a prototyped user interface is best supported by a simulation of the system. A
simulation allows for dynamic evaluation of the interface rather than just a static evaluation of the
screen's appearance. This allows potential users to evaluate both the look (in terms of the screen

layout, color, objects, etc.) and feel (in terms of operations and actions which need to be per-
formed) of a system's interface. Because of the need to provide dynamic evaluation of an interface,
there must be support for producing active simulations. The high-fidelity training simulators are
delivered too late to be effectively used in prototyping the displays. Therefore, it is important to
build a low fidelity simulator, so that the iterative cycle of refining the human computer interface
based upon a user's interactions can proceed early in software development.

INTRODUCTION

The Crew Systems Engineering Branch of the Mission Operations Laboratory of NASA Marshall
Space Flight Center was interested in a dynamic Human Computer Interface Prototyping Envi-
ronment for the International Space Station Alpha's on-board payload displays. On the Space

Station new payloads will be added to the on-board complement of payloads in ninety day
increments. Although a payload starts its development and integration processes from two to four
years before launch, an increment's set of new payloads' displays are due every ninety days. Thus,
this drives the need for an efficient and effective prototyping process. The functional components

of a dynamic prototyping environment in which the process of rapid prototyping can be carried out
have been investigated.

Most Graphical User Interface toolkits allow designers to develop graphical displays with little or
no programming, however in order to provide dynamic simulation of an interface more effort is
required. Most tools provide an Application Programmer's Interface (API) which allows the de-
signer to write callback routines to interface with databases, library calls, processes, and

-equipment. These callbacks can also be used to interface with a simulator for purposes of
evaluation. However, utilizing these features assumes programming language knowledge and
some knowledge of networking. Interface designers may not have this level of expertise and
therefore need to be provided with a friendlier method of producing simulations to drive the
interface.

This research is supported in part by the Mission Operations Laboratory, NASA, Marshall Space Flight
Center, MSFC, AL 35812 under Contract NAS8-39131, Delivery Order No. 25. The views and conclu-
sions contained in this document are those of the authors and should not be interpreted as representing the

official policies, either expressly or implied, of NASA.

A rapid prototypingenvironmenthasbeendeveloped(Moore,1993)whichallows for rapid pro-
totyping and evaluationof graphicaldisplays.The componentsof this environmentinclude:a
graphicaluserinterfacedevelopmenttoolkit, a simulator tool, a dynamicinterfacebetweenthe
interfaceandthesimulator,andanembeddedevaluationtool.Thepurposeof thisenvironmentis
to supporttheprocessof rapidprototyping,so it is importantthatthe tools includedwithin the
environmentprovidetheneededfunctionality,but alsobeeasyto use.

This paperdescribes two options for simulation within the dynamic prototyping environment:
petri nets and rule-based simulation. The petri net system which has been evaluated, PERCNET,

is designed to be used as a knowledge-based graphical simulation environment for modeling and
analyzing human-machine tasks. With PERCNET, task models (i.e., simulations) are developed
using modified petri nets. The rule based system which has been developed is a CLIPS based
system with an X windows interface for running the simulations. CLIPS executes in a non-
procedural fashion making it ideal for representing random and concurrent events required by the
simulation. It's C language-based design allows external communication to be programmed di-
rectly into the model. In order to compare the two approaches for simulation, a prototype of a user
interface has been developed within the dynamic prototyping environment with both simulation

architectures. This paper compares the two systems based upon usability, functionality, and
performance.

ARCHITECTURE OF THE DYNAMIC PROTOTYPING ENVIRONMENT

There are four components of the Human Computer Interface (HCI) Prototyping Environment: (1)
a Graphical User Interface (GUI) development tool, (2) a simulator development tool, (3) a dy-
namic, interactive interface between the GUI and the simulator, (4) an embedded evaluation tool.
The GUI tool allows the designer to dynamically develop graphical displays through direct
manipulation. The simulator development tool allows the functionality of the system to be im-
plemented and will act as driver for the displays. The dynamic, interactive interface will handle
communication between the GUI runtime environment and the simulation environment. The em-

bedded evaluation tool will collect data while the user is interacting with the system and will
evaluate the adequacy of an interface based on a user's performance. The architecture of the
environment is shown in figure 1.

User Grapical
Interface

Server Simulator

Embedded
Evaluation

T
Environment
(Simulation

Director)

Figure 1 - HCI Prototyping Environment Architecture

Interface Development Tool

The Graphical User Interface (GUI) tool for the prototyping environment will allow the designer
to create the display through direct manipulation. The GUI tool allows the designer to dynami-
cally create static and dynamic objects, windows, menus, and boxes. The tool also allows objects
created to be linked to a data source. During execution, the interface objects send and receive data
and commands to the simulator by way of the data server. The user interface objects and their
associated data access description are defined independent of the actual source of data. This first
allows the development of the interface and the simulator to occur concurrently. Second, an in-
terface developed with the GUI tool can later be connected to a high fidelity simulator and then to
the actual flight software.

Simulator Development Tool

The simulator development tool provides the capability to develop a low fidelity simulation of a
system or process. The development of a simulation has two important functions. First, the sim-
ulation helps the designer identify and define basic system requirements. Second, potential users
can evaluate both the look (in terms of the screen layout, color, objects, etc.) and feel (in terms of

operations and actions which need to be performed) of a system. The simulator provides realistic
feedback to the interface based on user inputs.

Dynamic, Interactive Interface

This interface will handle communication between the GUI prototyping tool and the simulation
tool during execution. The interface is a server which has been developed using the GUI's Appli-
cation Programmer's Interface. Messages and commands can be sent and received both ways
between the interface, the simulator and the server. The server also services requests from the
embedded evaluation process, providing information as to which actions the user has taken and
which events and activities have fired.

Embedded Evaluation Tool

An important aspect of the prototyping process is the,ability to evaluate the adequacy of the de-
veloped graphical user interfaces. The embedded evaluation tool communicates with the server to
receive information on the interaction between the user and the system. The types of data col-
lected include user actions, simulator events and activities, and the times associated with these

items. The collected data is analyzed to determine task correctness, task completion times, error
counts, and user response times. The data is then analyzed to provide feedback as to which fea-
tures of the interface the user had problems with and therefore need to be redesigned.

An Example: The Automobile Prototype

In order to assess the architecture described above a system was chosen to be prototyped in the

environment. The system chosen for empirical evaluation of the HCI prototyping environment
was an automobile. An automobile has sufficient complexity and subsystems' interdependencies

to provide a moderate level of operational workload. Further, potential subjects in the empirical
studies would have a working understanding of an automobile's functionality, thus minimizing

pre-experiment training requirements.

An automobile can be considered a system with many interacting components that perform a task.

The driver (or user) monitors and controls the automobile's performance using pedals, levers,
gauges, and a steering wheel. The dashboard and controls are the user interface and the engine is
the main part of the system. Mapping the automobile system to the simulation architecture calls

for a model of the dashboard and driver controls and a separate model of the engine. Figure 2
demonstrates how an automobile system could be mapped into the architecture described. The

main component of the automobile is the engine which responds to inputs from the driver (e.g. the
driver shifts gears or presses the accelerator pedal) and factors in the effects of the environment

(e.g. climbing a hill causes a decrease in the speed of the car). The driver changes inputs to obtain
desired performance results. If the car slows down climbing a hill, pressing the accelerator closer
to the floorboard will counteract the effects of the hill.

iJil!Jii!iiiii !J!i!J!iiiiJi!.............. , iiii isil.

 iil i ii!i!ii!

TI
l_i;iiiiiiiii{iiiiiiiiil_NNiiii_ iiiiiiiiiiiiiiiiiilili_i]

i::::ii::::i::iii::{iiiiiiii!_ i::_?::ii::ii::iiii::ii[::ii::ig::ii::::::::i::::gg::::i::iiii::iiiii::i

Figure 2 - Automobile Prototype

The dashboard and controls have been modeled using Sammi, a graphical user interface develop-
ment tool developed by Kinesix. Two options have been investigated for simulation: petri nets and
rules. Petri nets provide a graphical model of concurrent systems. The petri net system which has
been used is PERCNET, developed by Perceptronics. PERCNET is designed to be used as a
knowledge-based graphical simulation environment for modeling and analyzing human-machine
tasks. With PERCNET, task models are developed using modified petri nets, a combination of
petri nets, frames, and rules. The rule based system which has been used is CLIPS, a rule based

language primarily used for the design of expert systems, developed by NASA. CLIPS executes
in a non-procedural fashion making it ideal for representing random and concurrent events. The

automobile system has been prototyped using both the petri net and rule-based systems as simu-
lators and comparisons have been made based upon functionality, usability, and performance.

SIMULATION IN THE DYNAMIC PROTOTYPING ENVIRONMENT

Because of the need to provide dynamic evaluation of an interface rather than just static evalua-
tion, there must be support provided for producing active simulation. Most GUIs, including
Sammi, provide some sort of Application Programmer's Interface (API) which allow the devel-
oper to write call back routines which interface with databases, library calls, other processes and
equipment. We would like to provide a means of building a low fidelity simulation of the system
to drive the interface which does not require programming.

Basicsimulationrequirementsincludetheability to modeleventsandactivities,bothsequentially
and concurrently. The systemshouldprovide the ability to createsubmodelswithin the main
model. The simulatorclockmustbe linked to thesystemclock, andsupportshouldbeprovided
for the creationof temporalevents. The processmustbeableto communicatewith UNIX pro-
cessesusingtheTCP/IPprotocol. Realtimecommunicationmustalsobeprovidedto allow the
tool to communicatewith theGUI tool ona separateplatformvia Ethernet.Theability for two-
wayasynchronouscommunicationbetweentheruntimeversionsof theinterfaceandthesimulator
mustbeprovided. Thesimulatormustbecapableof receivingdatafrom theGUI tool to dynam-
ically controltemporalevents,to modify thevaluesof variables,andtriggereventsandactivities.
Theability to specifyandsendcommands,data,andalarmsto theGUI toolmustalsobeprovided.
A simulatordirector shouldbe able to sendcommands(e.g., start simulation, trigger scenario
event,etc.) to thesimulatorfromamonitoringstation.An interfaceshouldbeprovidedin orderto
bind interfaceobjectsto simulationobjectsin orderto setthevaluesof variables,triggereventsor
activities,andsettemporalvariables.

Simulation Using Petri Nets

PERCNET is a very powerful systems analysis software package designed by Perceptronics, Inc.
It provides an easy-to-use, graphical interface which allows users to quickly lay out a petri net
model of the system. PERCNET uses "modified" petri nets, which allow each state to describe
pre-conditions for state transitions, modify global variables, perform function calls and maintain a
global simulation time.

Pictorially, Petri nets show systems of activities and events. Ovals represent activities which de-
scribe actions performed by the system. Activities are joined by events, represented by vertical
bars, that occur during execution. Events are associated with user actions and environmental
conditions. Execution is shown by tokens propagating through the system. Flow of control passes
from activities to events. Before an event can f'tre all incoming arcs must have tokens. When this
occurs, the event places tokens on all outgoing arcs passing control to activities. The behavior that
an event exhibits during execution is dependant on the data contained in its frame. Frames record
data related to each activity and event. Event frames may contain rules and functions. Activity
frames allow the designer to specify a time to be associated with each activity. Figure 3 shows the
top-level petri net of the automobile simulator.

distributor

active _ engine

starter / _ running

Start -----__ ---__ ___ "__ End

to,o_,o sta. /;n,ion .Oioo

stop

spark plugs

Figure 3 - Top-Level Petfi Net of the Automobile Simulator

Thestarteris the component that is activated by the turning of the key. Before the starter can begin
working, however, the key should be turned on, the driver must be wearing his/her seat belt, the
car must be in neutral and the battery must have a sufficient charge to start the starter. When all
three pre-conditions are true, the starter is activated and control advances to the right in the Petri
net. Once the starter has been activated, it must do its part to start the automobile. The starter
allows electricity to flow into the distributor where it is channeled into the spark plugs. As long as
the starter is functioning, the distributor and spark plugs are activated. Finally, as long as the spark
plugs and distributor are working properly and there is gasoline, the spark from the spark plugs
ignites the gasoline mixture in the engine and ignition is achieved. Now that ignition has been

accomplished, the engine is running. The concentric circles representing the engine_running ac-
tivity in Figure 3 indicate that the state is shown in a sub-net.

The petri net representing the automobile passes from the ignition portion to the engine running
state and remains in the running state until some condition causes the engine to stop running. The
engine will stop running if the engine runs out of gas, runs out of oil, the temperature rises above
a certain threshold, the key is turned off, the engine stalls (when the automobile is in some gear and
the rpms fall below a threshold amount), the battery loses its charge or the fuel pump, oil pump,
spark plugs or alternator fail.

The major components of the engine modeled are: fuel pump, oil pump, water pump, distributor,
spark plugs, starter, battery, alternator, and fan. The condition of these components is modeled
using a boolean variable indicating either that they are functioning or they are not. The boolean
variables are then used as conditions within events occurring during the simulation. Details of the
Petri Net implementation can be found in Moore [1993].

Simulation Using Rules

Since CLIPS is rule-based, it is completely non-procedural. Furthermore, it allows programmers
to pick the strategy by which successive rule-firings are chosen. Certain rules may be designated

fired by different priority levels (rules with the highest priority fire before rules with lower prior-
ity). Other rule-selection strategies govern how rules with equal priority are selected. Events and
activities are represented by the pre- and post-conditions of rules. For example, the rule for acti-
vating the starter is:

(defrule TURN_KEY

?tick <- (clock_tick)

(test (= 1 ?*key*))

=>

(test (=

(test (=

(test (>

(test (=

1 ?*seatbelt*))

?*gear* 0))

?*battery* 10.0))

?*state* ?*READY*))

(bind ?*state* ?*STARTER*)

(retract ?tick)

(assert (clock_tick))

(printout t "ACTIVATE STARTER C ?*time* ")" crlf)

(tick_tocks 2)

(assert (updated TRUE))

In this project, CLIPS hasbeenextendedto includecommunicationcapabilities. Two sockets
havebeenprovidedfor readingfrom andwriting to theserver.C functionshavebeendeveloped
toeliminateredundantinformationfromthemessagespassedto theserver.Anotherimprovement
compiledinto theCLIPSexecutablehasbeenacontrolprocessthatallowsauserto start,stopand
quit CLIPSexecutionthroughagraphicalinterface.

The project also demonstratessomeprogrammingtechniquesusedin CLIPS to support the
simulation. A globalsimulationtimeshouldbemaintainedandamechanismfor keepingsimula-
tion executiontimehasbeendemonstrated.Anotherimportantfeaturethat makesuseof thetimer
is theperiodic updatefeature.ThisensuresthatCLIPSexecutionpauses(i.e., no rulesmayfire)
every few secondsto sendandreceiveinformationfrom theserver. When thishappens,control
returnsto themainroutinewhich initializescommunicationwith theserver.

Writing CLIPS programsto takeadvantageof this strategyrequirestheincorporationof several
techniques.Thesetechniquesincluderules,variables,andfunctionswhich maybeusedin sub-
sequentsimulationdesigns.Thefirst choiceinvolvesdeterminingwhich valueswill bepassedto
or receivedfrom the server. All globalvariables(definedusingthe "defglobal" command)are
passedto the server. No othervaluesarepassed.Factsandlocal variablesmaybeusedto store
valueswhichdonotneedto bepassedto theserver.It will beshownlaterhowcommunicationhas
beenfurther streamlinedfor efficiency. Themostimportantrule is theclock rule.

Theclockrule staysreadyat all times,butbecausethesalience(i.e.priority) of theruleiskept low,
it will not block the firing of otherrules. Whenexecutionbegins,the current systemtime is
retrievedandstored.Thecurrentsimulationtimeis alwaysknownby retrievingthesystemtime
andcomparingit to thestartingtime. Thenewsimulationtime is temporarilystoredin avariable
called"new_time"andiscomparedto thelastcalculatedtime. If thetwo valuesarethesame,then
theclock rule hasfired morethanoncewithin onesecond.In thatcase,thetimeisnotprintedand
factsareresetto allow theclock rule to f'treagain.

A "clock_tick" fact is usedin thepreconditionsof rulesto allow themto becomereadyfor firing.
Without theclock_tickfact,arulemayneverfire. Anothertimefeatureprovidedis thetick_tocks
function. Often a programmerwould like to forcea rule to consumeclock time. A call to the
tick_tocksfunction forcesexecutionto entera sideloop wheretherequiredtime elapsesbefore
executioncontinues.

COMPARISON

Usability

Most features of PERCNET are easy-to-learn and use While some study of petri-net theory
-would benefit designers, much could be done with very minimal knowledge of petri-nets. One

difficulty in working with PERCNET was the lack of available documentation on the Tool Com-
mand Language (TCL). All function calls, calculations, communication andad-hoc
programming are done using this language. Perceptronics provides only minimal documentation
on the use of the language within PERCNET making it very difficult to perform anything more
than the most basic operations. PERCNET's graphical interface is very appealing to users.

CLIPS is a rule-based language, which means that there may be a larger learning curve than there
is with PERCNET's point-and-click interface. After the initial learning stages, however, CLIPS
leaves a developer with an immensely powerful simulation tool. The main advantage is flexibility.

CLIPSwaswritten in theC programming language and is completely compatible and extendible
with C functions. Knowing C in advance can significantly lessen the learning curve. Many of the
"non-C" features of CLIPS resemble LISP. CLIPS has been a tremendous surprise to work with.
A basic proficiency with CLIPS may be gained quickly and one can learn to do very useful things
with the language. Writing the rules for the simulation was actually the easiest part of the project.
As proficiency with the language developed, more advanced features provided tremendous
possibilities. The manuals present the language in a very easy to read format, contained extensive

reference sections and sample code. Furthermore, the manuals outline how CLIPS may be easily
extended to include C (and other) functions written by programmers.

Functionality

As this project began, PERCNET was a closed package, that is, there was no provision for com-
municating with other applications. NASA contracted Perceptronics to modify PERCNET to
allow for such a feature. The final result was a revision of PERCNET which would allow com-

munication with other applications through the use of sockets. Applications are allowed to request
that global variables be retrieved and/or modified. PERCNET essentially opened it's blackboard
(i.e., global data store) to other applications. The other application in this case being the server.

After several functions were added to CLIPS (see descriptions in previous sections), the CLIPS
system performed the same functions as the Petri Net simulator. If a new system is prototyped, the
only changes which would be needed are to the knowledge base. The communication link devel-
oped for the Sammi-CLIPS architecture uses the blackboard paradigm to improve modularity,
flexibility, and efficiency. This form of data management stores all information in a central loca-
tion (the blackboard), and processes communicate by posting and retrieving information from the
blackboard. The server manages the blackboard, allowing applications to retrieve current values
from the board and to request that a value be changed. The server accepts write requests from
valid sources and changes values. The comparison of the two architectures goes much further than
comparing the two simulation designs. The design of the communication link significantly affects
the flexibility and performance of the architecture.

Performance

The performance within the Petri Net architecture was not acceptable for real-time interface
simulation. Interfaces running within this architecture exhibit a very slow response rate to user
actions when PERCNET is executing within its subnets. The PERCNET execution is also using
excessive amounts of swap space and memory which also affect the refreshing of displays.

Early analysis attempted to find the exact cause of the poor performance; however, only limited
work could be done without access to PERCNET's source code. Since PERCNET's code was

unavailable, we could only speculate about what was actually happening to cause the slow
responses. It was determined that the cause of much of the problem was that PERCNET was
trying to do too much. In the PERCNET simulation architecture, PERCNET is actually the data
server for the environment. The global blackboard is maintained within PERCNET. The server
only provides a mechanism for passing information between PERCNET and other applications.
The server is connected to PERCNET by a socket and the server is actually on the "client" end of
the connection-oriented socket. The server establishes connections with PERCNET and Sammi

and then alternately receives information from each. Any data or commands received from Sammi
are passed immediately to PERCNET. Commands from PERCNET for Sammi are passed
immediately through, as well. Finally, the server sends Sammi copies of all variables. Since
PERCNET is the blackboard server, as well as the simulator, PERCNET's performance would
naturally be affected by the added burden.

Lastly, themethodprovidedfor sendingvariablesto theserverwasterribly inefficient. Whena
calculationwasperformedin thesimulationmodelfor avariablethatwasneededby theinterface,
that variablewaspassedto the serverwhetheror not it's valuehadchangedfrom the previous
iteration. No mechanismwasprovidedfor restrictingthe numberof redundantvaluespassed
acrossthecommunicationlink. Asaresult,PERCNETpassedeveryvaluebackto theserverwhen
only a few hadactuallychanged.

Eachof theselimitationswasaddressedin the designof theserverandblackboardin therule-
basedarchitecture.The serverprogrammaybedividedinto threeportions:blackboardmanage-
ment, Sammi routines, CLIPS routines. The Sammi and CLIPS routines are provided to
communicatewith therespectiveapplications.Theseroutinesmapdataintoaspecial"blackboard
entry" form andpassthedatato theblackboardmanagementroutines. The blackboardroutines
alsoreturninformationto theSammiandCLIPSroutinesfor routingbackto theapplications.The
blackboardmanagementroutinesrequirethateachapplication(manymoreapplicationsmay be
supported)registeritself initially. Applicationsareassignedapplicationidentification numbers
which areusedfor all subsequenttransactions.This applicationnumberallowstheblackboardto
closelymonitorwhichvariablevalueseachapplicationneedsto see.It alsoprovidesamechanism
for installingapriority schemefor updates.

The overwhelmingadvantageof theCLIPSandblackboardcombinationis theflexibility andpo-
tential theyprovide.Featuresareprovidedthatallowmodificationswhichcanaffectperformance.
The ability to tunetheperformancehasallowedthesimulationarchitectureto be tailored to spe-
cific runningconditions(e.g.,machinelimitations,networktrafficandcomplexityof theinterface
beingsimulated).Severalparametersmaybemodifiedto alterperformance.Tuning testshave
improvedperformance.Moredetailedperformancetestingis plannedto verify theresults.

CONCLUSION

The goal of the architecture has been to provide simulation of user interfaces so that they may be
designed and evaluated quickly. An important portion of the dynamic prototyping architecture is
therefore the simulator. Ease-of-use is very important, but performance is critical. The Petri Net
architecture's ease-of-use is currently it's only advantage over the Rule-Based architecture. The
Rule-Based design overcomes this with power and flexibility. Work currently in progress include
a detailed analysis of the performance of the communication link and a design of a graphical
interface to CLIPS.

REFERENCES

CLIPS Reference Manual, NASA Johnson Space Flight Center, Houston, Texas, 1993.

Moore, Loretta, Assessment of a Human Computer Interface Prototyping Environment, Final Re-

_port, Delivery Order No. 16, Basic NASA Contract No. NAS8-39131, NASA Marshall Space
Flight Center, Huntsville, Alabama, 1993.

PERCNET User's Manual, Perceptronics Inc., Woodland Hills, Caiifomia, 1992.

Price, Shannon, An Improved Interface Simulation Architecture, Final Report for Master of Com-
puter Science and Engineering Degree, Auburn University, Auburn, Alabama, 1994.

Sammi API Manual, Kinesix Corporation, Houston Texas, 1992.

